55 def __init__(self, filename: str, verbosity: int = 0, batch_mode: bool =
False) ->
None:
57 Loads a given HDF5 file.
60 filename (str): HDF5 file to open.
61 verbosity (int): Verbose level. 0: Only errors. 1: Warnings. 2: All.
65 super().
__init__(filename, verbosity, batch_mode)
94 Read from the given data fragment path.
96 Returns a np.ndarray of the first TC that was read and appends all TCs in the fragment to :self.tc_data:.
100 print(f
"INFO: Reading from the path\n{fragment_path}")
102 fragment = self.
_h5_file.get_frag(fragment_path)
103 fragment_data_size = fragment.get_data_size()
105 if fragment_data_size == 0:
111 +
"WARNING: Empty fragment."
115 return np.array([], dtype=self.
tc_dt)
119 while byte_idx < fragment_data_size:
121 print(f
"INFO: Fragment Index: {tc_idx}.")
123 print(f
"INFO: Byte Index / Frag Size: {byte_idx} / {fragment_data_size}")
126 tc_datum = trgdataformats.TriggerCandidate(fragment.get_data(byte_idx))
127 np_tc_datum = np.array([(
128 tc_datum.data.algorithm,
131 tc_datum.data.time_candidate,
132 tc_datum.data.time_end,
133 tc_datum.data.time_start,
135 tc_datum.data.version)],
140 byte_idx += tc_datum.sizeof()
142 print(f
"INFO: Upcoming byte index: {byte_idx}.")
145 np_ta_data = np.zeros(np_tc_datum[
'num_tas'], dtype=self.
ta_dt)
146 for ta_idx, ta
in enumerate(tc_datum):
147 np_ta_data[ta_idx] = np.array([(
162 self.
ta_data.append(np_ta_data)
165 print(
"INFO: Finished reading.")